
Acceleration of LSB Algorithm in GPU
Darshan R1, Prabu R2, Divya M3

3Assistant Professor,Department of Information Technology,
 Amrita Vishwa Vidyapeetham,
Coimbatore, Tamil Nadu, India.

Abstract- This paper presents a method for acceleration of
LSB (Least Significant Bit) Algorithm in GPU (Graphics
Processing Unit) using a programming model called CUDA.
CUDA is a state-of-the-art parallel computing architecture
developed by nVIDIA. CUDA allows the programmers to
access the GPU directly by invoking the Kernel. In Image
Steganography, parallelization of computations to a single
pixel and the hybrid mix of message passing and shared
memory access routines allows us to accelerate the LSB
algorithm and thereby reducing the runtime of the program.

Keywords- CUDA, GPU, LSB Algorithm, Image
Steganography, Parallel Processing Architecture, Acceleration
of Algorithms, Parallel Computing.

I. INTRODUCTION

Steganography is a technique which deals with
encoding information in an image without making any
significant visible changes to it. The goal is to hide an
information within the cover image, such that the encoded
file’s existence is concealed. It is of immense use because it
allows the sender and the receiver to protect the identity of
the file. Several methods have been proposed for image
based steganography, LSB being the most efficient and
simplest of all. Nowadays, plagiarism is a big threat in
photography and identity spoofing is prevalent in many
places. To curb this, the solution used is Steganography.

CUDA is a general purpose parallel computing
architecture that leverages the parallel compute engine in
nVIDIA Graphics Processing Units (GPUs) to solve many
complex computational problems in a fraction of the time
required on a CPU. It includes the CUDA Instruction Set
Architecture (ISA) and the parallel compute engine in the
GPU. This is the platform used to implement the LSB
Algorithm. Parallelization of LSB Algorithm can
immensely benefit the real-time applications using
steganographic techniques.

II. TOOLS AND REQUIREMENTS

To implement the LSB Algorithm in CUDA the following
tools are necessary,

A. Software Requirements
 nVIDIA CUDA 5.5 Toolkit
 Microsoft Visual Studio 2012 (for Windows 7, 8,

8.1) or Eclipse (for Linux)

B. Hardware Requirements
 A CUDA capable nVIDIA Graphics Card
 Preferably 2 GB DDR3 RAM or Greater

 Preferably Intel Core i3-2330M CPU @ 2.20 GHz
processor or Greater

III. IMPLEMENTATION

Implementation of the LSB Algorithm can be
done with inputs of an image of size M*N, where M
represents number of pixels on the X-Axis and N represents
number of pixels in the Y-Axis and an audio file which is
chosen as .information file. The input cover image needs to
be converted into a bitmap format, where each pixel is
represent by the values taken by the RGB components. The
audio file is read in binary format and stored in the LSB of
the RGB components for the considered bitmap cover
image in a cyclic order. Each pixel can store 3 bits of data
from the considered audio file, where all the 3 bits are
equally shared by RGB components in their LSB.
Therefore I byte of the information is stored in 3 pixels of
the cover image. The algorithm is implemented using
CUDA (CUDA uses nvcc compiler which has C compiler
with additional functions and keywords provided by
nVIDIA)

IV. PARALLELIZATION

A. Parallelization requirements and CUDA Architecture
Support

To parallelize the proposed algorithm we require
M*N threads. Since these threads can execute independent
of each other, we can parallelize LSB to maximum extent
(.i.e.to a pixel level). These requirements can be satisfied
by using nVIDIA Graphics Processing Unit, where there
are numerous kernels capable of executing independent of
each other. In the GPU there are several Blocks which
contains 1024 grids and each grid carries 1024 threads or
kernels. Therefore we have an ideal architecture to
implement the parallelization of LSB Algorithm.

B. Data Structures

The byte can be stored in unsigned character,
where the values range from 0 to 255. Collection of all
bytes are stored in unsigned character array. The byte
values are converted to Boolean when the LSB need to be
altered to store the audio bits and they are again converted
back to bytes and these bytes ate written to the file. To
make GPU operational we need to allocate memory in the
device (device represents GPU) and pass the unsigned chat
array pointer to the __global__ function (__global__ is a
keyword which is understood by the device).

Darshan R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2865-2867

www.ijcsit.com 2865

C. Workflow in CUDA

The memory allocation for the device is followed
coping the data in by global function call with M number of
grids and N number of kernels. When the globalfunction is
invoked the control is shifted from CPU to GPU. The LSB
Algorithm is embedded in the global function with
appropriate grid id and thread id. Once all the kernel
finishes its execution, the control is transferred back to
CPU.

V. PERFORMANCE ANALYSIS

The performance measure used here is the Speed-
Up factor. Speed-Up can be defined as a ratio of Time
Taken for the Execution of a set of instructions in Single
Core is to Time Taken for the Execution of the same set of
instructions in Multicore. For the calculation, five sample
cover images are chosen. The information to be hidden are
the five sample audio files corresponding to the respective
cover images. LSB Algorithm is executed separately on
both CPU AND GPU. The time taken for their execution is
measured and analysed respectively. The information
regarding the sample inputs are mentioned in TABLE I.
The result we obtained is shown in TABLE II. The
comparison of their execution time between CPU and GPU
can be understood from FIGURE I.

TABLE I

SAMLE INPUTS TO LSB ALGORITHM

S
A
M
P
L
E

COVER
IMAGE
(.BMP)

MESSAGE
FILE

(.MP3)

SIZE OF
THE

COVER
IMAGE
(IN KB)

SIZE OF
THE

MESSAGE
FILE

(IN KB)

1 Elephant Elephant 481 10

2 Penguin Penguin 480 8

3 Bike Bike 482 36

4 River River 481 32

5 Tiger Tiger 480 23

TABLE III
RESULTS OF LSB ALGORITHM IN CPU AND GPU FOR THE

SAMPLE INPUTS

SAMPLE TIME
TAKEN IN

CPU
(IN MS)

TIME
TAKEN IN

GPU
(IN MS)

SPEED-UP

1 344 47 9.58

2 234 31 9.13

3 1197 73 41.96

4 1140 62 30.87

5 828 47 21.41

FIGURE I

COMPARISON OF TIME TAKEN FOR EXECUTION IN CPU AND
GPU

VI. CONCLUSION

From the above statistics, we can observe that the
execution time taken in GPU are just the fractions of the
time when compared to the time taken for execution in
CPU and thereby accelerating the LSB Algorithm up 40
times faster (on average 20 times faster). The true power of
CUDA can only be realized in real-time application where
numerous computations need to be done within the time
bound. With the development of new and powerful parallel
computing architectures, the real-time application
developers are encouraged to implement their ideas in the
parallel architecture and reap the benefits. Parallel
computing is a strong tool and once they are used
appropriately the benefits we achieve is beyond measures
because we can save the most valuable and non-renewable
resource, the time. Therefore we can further enforce the
need for parallelization.

ACKNOWLEDGEMENT

We take this opportunity to express our profound
gratitude and deep regards to our project guide Miss Divya
M for her exemplary guidance, monitoring and constant
encouragement throughout the course of this project. We
also take this opportunity to express a deep sense of
gratitude to Miss Sikha O K, for her cordial support,
valuable information and marvellous guidance. We are
obliged to staff members of Security and Networking
Panel, for the valuable information provided by them in
their respective fields. We are grateful for their cooperation
during the period of our project.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5
M

IL
L

IS
E

C
O

N
D

S
SAMPLE

CPU VS GPU

CPU GPU

Darshan R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2865-2867

www.ijcsit.com 2866

REFERENCES

[1] Patel, B., Samir, Pradhan, N., Shrikant, Ambegaokar, U.,
Saumitra, ‘A Novel Approach for Implementing
Steganography with Computing Power obtained by combining
CUDA and MATLAB’, International Journal of Computer
Science and Information Security (IJCSIS), Vol. 6, No. 2,
pp.133-137, 2009.

[2] Adnan Abdul-Aziz Gutub, ‘Pixel Indicator Technique for RGB
Image Steganography’, King Fahd University of Petroleum and
Minerals (KFUPM), Saudi Arabia.

[3] Bloisi, Domenico, Ioochi, Luca, ‘Image based Steganography
and Cryptography’, Sapienza University of Rome, Italy.

[4] Gupta, Shilpa, Gujral, Geeta, Aggarwal, Neha, ‘Enhanced
Least Significant Bit algorithm for Image Steganography’,

IJCEM International Journal of Computational Engineering &
Management, Vol. 15, Issue 4, pp. 40-42, July 2012.

[5] Sorel, Y., ‘Massively Parallel Computing Systems with Real
Time Constraints, The Algorithm Architecture Ad equation
Methodology’, INRIA, Domaine de Voluceau, Rocquencourt
B.P.105 78153 LE CHESNAY CEDEX FRANCE.

[6] Mohammad Tanvir Parvez, Adnan Abdul-Aziz Gutub, ‘RGB
Intensity Based Variable-Bits Image Steganography’, IEEE
Asia-Pacific Services Computing Conference, pp. 1322-1327,
2008.

[7] Yu-Chee Tseng, Member, IEEE, Yu-Yuan Chen, Hsiang-
Kuang Pan, ‘A Secure Data Hiding Scheme for Binary
Images’, IEEE TRANSACTIONS ON COMMUNICATIONS,
VOL. 50, NO. 8, pp. 1227-1231, AUGUST 2002.

[8] Channalli, Shashikala, Jadhav, Ajay, ‘Steganography, An Art
of Hiding Data’, International Journal on Computer Science
and Engineering Vol.1 (3), 2009, pp. 137-141

.

Darshan R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2865-2867

www.ijcsit.com 2867

